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The expressions for the 19 fourth order elastic constants, 10
third order elastic constants, and 6 second order elastic constants
of a solid are derived using the method of homogenous deforma-
tion with interactions extending up to second neighbors using the
sublattice displacements to the second degree in strains. These
expressions are used to obtain the higher order elastic constants
and their pressure derivatives in titanium. Titanium belongs to
the hexagonal class of crystals. The higher order elastic con-
stants are used to find the generalized Gruneisen parameters of
the elastic waves propagating in different directions in titanium.
The Brugger gammas are evaluated and the low temperature
limit of the Gruneisen gamma is obtained. The results are
compared with the available reported values. ( 1997 Academic Press

INTRODUCTION

Higher order elastic constants are a measure of the anhar-
monicity of a solid. Higher order elastic constants determine
the anharmonic properties of solids, such as thermal expan-
sion, temperature and pressure dependence of elastic con-
stants, and interactions of acoustic and thermal phonons.
The hexagonal system has 6 second order elastic constants
(SOEC), 10 third order elastic constants (TOEC), and 19
fourth order elastic constants (FOEC). In this paper the
expressions for the 6 SOECs, 10 TOECs, and 19 FOECs
have been derived using the method of homogenous defor-
mation of Born and Huang (1). These expressions are used
to evaluate the higher order elastic constants of titanium.
First order pressure derivatives of the second order elastic
constants of a crystal are evaluated. Second order pressure
derivatives are obtained as a function of second order, third
order, and fourth order elastic constants. Using the finite
1To whom correspondence should be addressed.
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strain theory of Murnaghan (2), the expressions for second
pressure derivatives of the effective SOEC of a hexagonal
solid have been derived in terms of second, third, and fourth
order elastic constants by Ramji Rao and Padmaja (3).
These expressions are used in this paper to obtain the
second pressure derivatives of titanium. These elastic con-
stants are also used to find the low temperature limit of the
thermal expansion coefficients of titanium. Titanium be-
longs to group IV A of the periodic table. Titanium crystal-
lises in hexagonal close packed structure at atmospheric
pressures and low temperatures. It undergoes phase trans-
formation from the hcp to the bcc structure at high temper-
atures.

The cell parameters of titanium are D"a"2.95 As and
c"4.686 As and the density of the crystal is 4.54 g cm~3.
Second order elastic constants of titanium have been experi-
mentally determined by Fisher and Renken (4) and their
pressure derivatives by Fisher and Manghnani (5). The third
order elastic constants are reported by Ramji Rao and
Menon (6) using Keating’s approach.

HIGHER ORDER ELASTIC CONSTANTS OF TITANIUM

Interactions between atoms only up to second nearest
neighbors of titanium are considered. The position coordi-
nates of the two nonequivalent atoms in the unit cell are

RA
0

1B"D[0, 0, 0], RA
0

1B"D[1/2J3, 1/2, p/2].

Here p is the axial ratio c/a; c and a are the unit cell
distances.

The potential energy/unit cell is
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Here I atoms are the six nearest neighbors of the same
type in the basal plane and the J atoms are the six nearest
nonequivalent neighbors out of the basal plane. The compo-
nents of the interatomic vector R after deformation are
given by

R@
i
(I)"R

i
(I)#+

I

e
ij
R

j
(I)

R@
i
(J)"R

i
(J)#+

J

e
ij
R

j
(J)#¼

i
.

Here e
ij

is the deformation parameter related to the mac-
roscopic Lagrangian strain g

ij
by
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Potential energy can be expanded in powers of changes in
the squares of vector distances R (I) and R(J) as
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Here K
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is the harmonic parameter and K
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the third and fourth order anharmonic parameters, which
are defined as
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The term [d/(r)/d(r2)] does not exist, as the derivatives are
calculated in the equilibrium configuration. The Lennard—
Jonnes potential is given by
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For this potential K
2
, K
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, and K
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are calculated as
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where M is the mass of the atom and D"a is the nearest
neighbor distance in the basal plane.

Ramanand et al. (7) have shown that to evaluate the
FOEC of an hcp lattice it is enough to obtain the sublattice
displacements up to second degree in strain. The internal
displacements ¼

i
can be obtained in terms of the Lagran-

gian strain by minimizing the strain energy with respect to
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Substituting the value of ¼
i

from Eq. [1] we get the
expressions for energy/unit volume of the undeformed state.
The resulting expression is compared with that of the elastic
energy density:
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We get the expressions for the fourth, third, and second
order elastic constants as
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where »
a
"J3/2pD3 is the volume of the unit cell. These

expressions are used to evaluate the fourth, third, and sec-
ond order elastic constants of titanium.
LOW TEMPERATURE THERMAL EXPANSION
OF TITANIUM

Uniaxial crystals are characterized by two principal linear
expansion coefficients, a

@@
, parallel to the unique axis, and

a
M
, perpendicular to the unique axis. The behavior of these

expansion coefficients at low temperature is governed by
two generalized Gruneisen parameters c

j
(h, /), defined as
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where v
j
(h, /) is the velocity of the elastic waves travelling in

a direction (h, /), j is the polarization index of the wave, h is
the angle the direction of wave propagation makes with the
hexagonal axis, / is the azimuthal angle, e@ is a uniform areal
strain perpendicular to the unique axis, and e@@ is a uniform
longitudinal strain parallel to the unique axis. These gener-
alized Gruneisen parameters can be calculated from the
second and third order elastic constants of a solid as shown
by Ramji Rao and Srinivasan (8). Using the second and
third order elastic constants of titanium the elastic wave
velocities v

j
(h, /), the generalized Gruneisen parameters

c@
j
(h, /) and c@@

j
(h, /) for different values of h and / at inter-

vals of 5° for h and / ranging from 0 to 90° are calculated.
The calculations were made on a computer using the pro-
gramming language FORTRAN.

The linear thermal expansion coefficients of a uniaxial
crystal are given by
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Here » is the molar volume, the S
ij

are the elastic compli-
ance coefficients, and C

v
(¹ ) is the molar specific heat at

temperature ¹. c@(¹ ) and c@@(¹ ) are the effective Gruneisen
functions, being the weighted averages of the Gruneisen
functions of all the normal modes of the crystal. At very low
temperatures, the effective Gruneisen parameters are deter-
mined by the mode gammas of the elastic waves and c@ (¹ )
and c@@ (¹ ) attain limiting values c@
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TABLE 1
Second Order Elastic Constants in 1010 N/m2 and First Pressure

Derivatives of Titanium

Exptl Exptl
C

ij
Calc values values dC

ij
/dp Calc values values

C
11

17.33 16.24 dC
11

/dp 3.55 5.01
C

12
4.84 9.2 dC

12
/dp 1.069 4.11

C
13

3.96 6.96 dC
13

/dp 1.772 —
C

33
18.03 18.07 dC

33
/dp 6.336 4.88

C
44

4.34 4.67 dC
44

/dp 0.593 0.52
C

66
6.72 3.52 dC

66
/dp 1.745 0.45

TABLE 2
Third Order Elastic Constants of Titanium in 1010 N/m2

C
ijk

Calc values Exptl values

C
111

!134.78 !135.8
C

112
!38.29 !110.5

C
113

!3.23 !1.7
C

133
!35.99 !38.3

C
123

!10.59 !16.21
C

344
!38.3 !33.17

C
333

!161.7 !161.5
C

222
!230.6 !189.57

C
144

!11.28 !26.3
C

155
!5.93 11.7

56 SINDHU AND MENON
c@@
0
"

3
+
j/1
P v~3

j
(h, /)c@@

j
(h, /)d)

3
+
j/1
P v~3

j
(h, /)d)

. [8]

The integration is over the entire solid angle. We have
obtained the values of c@

0
and c@@

0
by numerical integration

over the solid angle. The integral was evaluated by dividing
h and / into intervals of 5° and the values are obtained.

Brugger and Fritz (9) have defined the functions
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is the isothermal compressibility. Combining [7]
and [8] the low temperature limits of the Brugger gammas
are given by
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Using the values of c@
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0

we get cB3
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Using these two values the low temperature limit c
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a hexagonal metal can be calculated using the formula
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RESULTS AND DISCUSSION

Values of second order elastic constants C
11

and C
33

by
Fisher and Renken (4) are used to evaluate the harmonic
parameter K

2
and the third order elastic constants of Ramji

Rao and Menon (6) are used to evaluate the anharmonic
parameter K

3
using the expressions [5] and [6]. The values
of K
2

and K
3

are used to obtain the SOECs and TOECs of
titanium using the derived expressions. The pressure deriva-
tives of the SOECs of titanium are also evaluated. These
evaluated SOECs and first pressure derivatives are collected
in Table 1. These are compared with the experimental
SOEC values (4) and first pressure derivatives (5). The
evaluated TOECs are collected in Table 2. These values are
compared with the other reported theoretical values of
Ramji Rao and Menon (6). The values of m and n (10, 11),
are chosen to give satisfactory agreement to the reported
TOEC of titanium. The values of K

2
, m, and n are used to

evaluate the anharmonic parameter K
4
. Thus the values

obtained for K
2
, K

3
, and K

4
are used in Eq. [14] to get the

fourth order elastic constant of titanium. The calculated
fourth order elastic constants of titanium are collected in
Table 3. C

1111
and C

3333
have large magnitude. The large

difference in magnitude of C
1111

and C
3333

indicates the
higher order elastic anisotropy in the crystal. These higher
order elastic constants are used to evaluate the second
pressure derivatives of titanium. These values are collected
in Table 4. The magnitude of d2C

11
/dp2 and d2C

33
/dp2 are

quite large, indicating that phase change from hcp to bcc
structure would occur in this metal at a high temperature of
1155 °K (4). The values of Gruneisen coefficients are



TABLE 3
Fourth Order Elastic Constants of Titanium in 1010 N/m2

(m51, n55)

C
ijkl

Calc values

C
1111

1280.6
C

1112
442.55

C
1113

!21.42
C

1122
156.69

C
1123

34.54
C

1133
34.95

C
1144

22.5
C

1155
4.668

C
1166

435.39
C

1233
101.62

C
1244

22.5
C

1255
22.5

C
1333

258.44
C

1344
85.161

C
1355

51.416
C

2223
!8.377

C
3333

978.69
C

4444
102.43

C
3344

258.44

TABLE 4
Second Pressure Derivatives of Titanium in 10[10 m2/N

d2C
ii
/dp2 Calc values

d2C
11

/dp2 1.4425
d2C

12
/dp2 1.2973

d2C
13

/dp2 0.7086
d2C

33
/dp2 1.624

d2C
44

/dp2 0.2191
d2C

66
/dp2 0.4542

TABLE 5
Low Temperature Limit of cL in Titanium

Present
calculation Exptl value (8) Reported value (6)

c
M

0.5489 1$0.5 0.78
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c@
0
"0.548 and c@@

0
"0.972 for titanium. The Brugger gam-

mas are calculated as

cB3
M

(0)"0.27, cB3
@@

(0)"0.002.
FIG. 1. Variation of the Generalized Gruneisen Parameters c@ (A) and c
The low temperature limit of the Gruneisen gamma is ob-
tained as 0.5489. This is compared with the available re-
ported value in Table 5.

The low temperature limit of the Gruneisen gamma is
positive and so we expect the volume expansion to be
positive down to OK for this crystal. The variation of c with
h for different value of / (/"15°, 35°, 75°) is shown in
Figs. 1A, 1B, 2A, 2B, 3A, and 3B. The anisotropy in all the
@@ (B) as a Function of h for the Azimuthal Angle /"15° in Titanium.



FIG. 2. Variation of the Generalized Gruneisen Parameters c@ (A) and c@@ (B) as a Function of h for the Azimuthal Angle /"35° in Titanium.

58 SINDHU AND MENON
graphs of c vs h accounts for the pronounced anhar-
monicity of the solid in certain specific directions. The
average Gruneisen function, cB3

M
and cB3

@@
are 0.27 and 0.002,
FIG. 3. Variation of the Generalized Gruneisen Parameters c@ (A) and c
respectively. This suggests that the anisotropy in thermal
expansion along the c-axis is more pronounced than that
along the ab plane.
@@ (B) as a Function of h for the Azimuthal Angle /"75° in Titanium.
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